

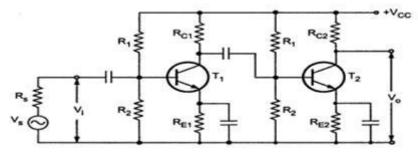
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : AEC(16EC411) Course & Branch: B.Tech -EEE

Year & Sem: II B. Tech & II-Sem **Regulation:** R16


UNIT 1 MULTI STAGE AMPLIFIES

- 1. a) Derive the equation for the overall voltage gain of a multistage amplifier in terms of the individual voltage gains.
 - b) What are multi-stage amplifiers.

[2M]

- 2. Describe different methods used for coupling multistage amplifiers with their frequency
- 3. Draw the block diagram of CE-CC cascaded amplifier and analyze its various parameters.

- 4. Draw the cascode amplifier circuit and derive expressions for voltge gain, current gain, input impedance and output impedance. [12M]
- 5. With neat diagram, analyze the two stage RC coupled amplifier. [12M]
- The following figure shows CE-CE cascade amplifier with their biasing arrangements. 6. Calculate R_i , A_i , A_v , R_i , A_{vs} and A_{is} if circuit parameters are: R_s =1K, R_{c1} = 15K, R_{E1} = 100 Ω , R_{C2} = 4 K Ω , R_{E2} = 330 Ω with R_1 = 200K and R_2 = 20K for first stage & R_1 = 47K and R_2 = 4.7K for second stage. Assume that h_{ie} = 1.2k Ω , h_{fe} = 50, h_{re} = 2.5 x 10⁻⁴ and h_{oe} = 25 x 10⁻⁶ A/V.

CE-CE Cascade amplifier

7. Discuss the concept of gain -band width product.

- [12M]
- 8. Explain the calculation of band width of single and multi stage amplifier.

[12M]

- 9. Draw the block diagram of two stage RC coupled using FET amplifier and it frequency response. [12M]
- 10. Let us consider the two stage amplifier, the first stage in the circuit is a CE amplifier and second stage is CC amplifier, calculate R_i, A_i, A_v, R_i, A_{vs} and A_{is} if circuit parameters are: $R_s=1K$, $R_{c1}=3.3K$, $R_{E2}=4.7k\Omega$. Assume that $h_{ie}=2k$, $h_{fe}=50$, $h_{re}=0$ and $h_{oe}=0$. [12M]

UNIT-II FEEDBACK AMPLIFIERS

- 1. Explain the characteristics of negative feedback amplifiers. [12M]
- 2. Calculate the gain, input impedance and output impedance of voltage series feedback Amplifier having gain A = -300, R_{in} = 1.5 k Ω and R_{out} = 50 k Ω , β = 0.05. [12M]
- 3. a) Explain Feedback topologies. [5M] b) Give the detailed analysis of Current Series feedback amplifier. [7M]
- 4. Derive the expressions of input and output resistances for Voltage Shunt Feedback amplifiers.

[12M]

- 5. a) Draw the block diagram of an amplifier with feedback and explain its concept. [6M] b) Derive the stabilization gain of negative feedback amplifier. [6M]
- 6. An amplifier has voltage gain with feedback of 100 if the gain without feedback changes by 20% and the gain with feedback should not vary more than 2%, determine the values of open loop gain A and feedback ratio β . [12M]
- 7. Derive the expressions of input and output resistances for current series Feedback amplifiers.
- 8. a) A voltage series negative feedback amplifier has a voltage gain without feedback of A = 500, input resistance Ri = 3 k Ω , output resistance R_O = 20 k Ω and feedback ratio β = 0.01.calculate the voltage gain A_f, input resistance Rif and output resistance R_{of} of the amplifier with feedback. [5M]
 - b) Give the detailed analysis of voltage Series feedback amplifier. [7M]
- 9. Derive the expressions of input and output resistances for current shunt Feedback amplifiers.

[12M]

- 10. a) Give the detailed analysis of voltage shunt feedback amplifier. [7M] b) An amplifier has an open loop gain of 1000 and a feedback ratio of 0.04. if the open loop
 - gain changes by 10% due to temperature, find the percentage change in gain of the amplifier with feedback. [5M]

UNIT-III SINUSOIDAL OSCILLATORS

1.	a) Draw the circuit diagram of RC phase shift Oscillator and Explain its working.	[7M]	
	b) Explain the concept of frequency stability of Oscillators.	[5M]	
2.	a) State and explain Barkhausen criterion of Oscillations.	[7M]	
	b) In a Hartley oscillator, the value of the capacitor in the tuned circuit is 500 pF and the two		
	sections of coil have inductances 38 μH and 12 μH . Find the frequency of oscillations an	d the	
	feedback factor β .	[5M]	
3.	a) Find the frequency of the oscillations of a transistorized Colpitts oscillator having C_1 =	: 150	
	pF,C ₂ = 1.5nF and L = 50 μH .	[5M]	
	b) Draw the circuit diagram of a Colpitts Oscillator and explain the principle of operation	i. [7M]	
4.	Derive the expression for frequency of Oscillations of a Wein - Bridge Oscillator.	[12M]	
5.	a) In a Hartley oscillator, $L_2 = 0.4$ mH and $C = 0.004$ μF . if the frequency of the oscillator is		
	$120kHz$, find the value of L_1 . Neglect the mutual inductance.	[7M]	
	b) What is piezoelectric effect? Draw and explain a.c equivalent circuit of a crystal.	[5M]	
6.	Draw the circuit of Hartley oscillator and explain its working. Derive the exp		
	frequency of oscillation.	[12M]	
7.	a) Explain the principle of operation of clapp oscillator.	[7M]	
	b) A tank circuit contains an inductance of 1 mH. Find out the range of tuning capacitor	alue if	
	the resonant frequency ranges from 540 – 1650 kHz.	[5M]	
8.	a) Draw the circuit diagram of Colpitts oscillator and explain its working.	[7M]	
	b) In Colpitts oscillator, $C1 = 0.2 \mu F$ and $C2 = 0.02 \mu F$. if the frequency of the oscillator is 10		
	KHz, find the value of the inductor. Also find the required gain for oscillation.	[5M]	
9.	a) Draw the circuit diagram of tuned collector oscillator and explain its working.	[7M]	
	b) A tuned collector oscillator in a radio receiver has a fixed inductance of $60~\mu H$ and has to be		
	tunable over the frequency band of 400 to 1200 kHz. Find the range of variable capacito	or to be	
	used.	[5M]	
10.	a) Draw the circuit diagram of Wien- bridge oscillator and explain its working.	[7M]	
	b) In a Wien – bridge oscillator , if the value of R is 100 K Ω , and frequency of oscillations is 10		
	kHz, Find the value of capacitor C.	[5M]	

<u>UNIT – IV</u>

LARGE SIGNAL AMPLIFIERS

- 1. a) Explain the classification of amplifiers based on the based on biasing condition. [7M]
 - b) Write short note on class A amplifiers.
- 2. a) Compare series fed and transformed coupled class A amplifiers. [7M]
 - b) write short note on power output and efficiency of class A power amplifiers. [5M]
- 3. a) Explain about transformed coupled class A amplifier. [7M]
 - b) Calculate the effective resistance R_L seen looking into the primary of a 10:1 transformer connected to an output load of 16Ω . [5M]
- 4. a) Draw the circuit diagram of push pull class B amplifier and explain its working principle.

[7M] [5M]

[5M]

- b) What are the Advantages & disadvantages of push pull class B amplifier.
- 5. A class A power amplifier has zero signal collector current of 100mA. If the collector supply voltage is 5V, determine. [12M]
 - a) Maximum a.c power output
 - b) Power rating of transistor
 - c) Maximum collector efficiency.
- 6. a) Draw the circuit diagram of complementary symmetry class B amplifier and explain its working principle.
 - b) What are the Advantages & disadvantages of complementary symmetry class B amplifier. [5M]
- 7. a) Discuss the primary function of phase inverters.

[7M]

- b) For a transistor, $T_i = 160^{\circ}$ c, $T_A = 40^{\circ}$ c, and $\Theta_{i-A} = 80^{\circ}$ c/W. Calculate the power that the transistor can safely dissipate in free air. [5M]
- 8. a) What are the types of Heat sinks and Explain the concept of power dissipation thermal stability.
 - b) Determine the power dissipation capability of a transistor which has been mounted with a heat sink having thermal resistance $\Theta_{Hs-A} = 8^{0}\text{c/w}$, $T_{A} = 40^{0}\text{c}$, $T_{j} = 160^{0}\text{c}$, $\Theta_{j-A} = 85^{0}\text{c/W}$. [5M]
- 9. a) Explain about Power dissipation thermal stability for a transistor.
 - b) In a class B amplifier, V_{CE} (min) = 2V and supply voltage V_{CC} = 15 v. Find the collector circuit efficiency. [5M]
- 10. a) what is crossover distortion? Explain.

[7M]

b) In a class B amplifier, V_{CE} (min) = 1V and supply voltage V_{CC} = 18 v. Find the collector circuit efficiency. [5M]

$\underline{UNIT-V}$

Linear Wave shaping & Multivibrators

1.	a) Draw a high pass RC circuit and its frequency response.	[7M]		
	b) How Low pass RC circuit be used as a Integrator.	[5M]		
2.	a) Derive the response of a high pass RC circuit for step Input.	[7M]		
	b) How High pass RC circuit be used as a Differentiator.	[5M]		
3.	a) Derive the Response of a low pass RC circuit for Step input.	[7M]		
	b) Determine the upper 3-dB frequency for low pass RC circuit, if a pulse of 0.4 µsec is			
	required to pass without distortion. Find the value of resistance if the capacitor is $0.001 \mu F$.			
		[5M]		
4.	a) A Pulse generator with an output resistance R_s =500 Ω is connected to an oscilloscope with			
	an input capacitance of C _i =30 pF.Determine the fastest rise time that can be displayed.	[7M]		
	b) Derive the response of a high pass RC circuit for square wave Input.	[5M]		
5.	A 10Hz square wave is fed to an amplifier. Calculate and plot the output waveform u	waveform under the		
	following conditions: The lower 3 dB frequency is i) 0.3 Hz ii) 3 Hz iii) 3	0 Hz		
		[12M]		
6.	Explain the basic series clipper above and below reference voltage.	[12M]		
7.	a) Explain the negative clamper circuit with wave forms.	[7M]		
	b) Explain the positive clamper circuit with wave forms.	[5M]		
8.	a) what is multivibrator? How multivibrators are classified.	[7M]		
	b) With help of diagram explain the operation of Mono stable Multivibrator.	[5M]		
9.	a) With help of diagram explain the operation of Bi-stable Multivibrator.	[7M]		
	b) Write a note on free running multivibrator.	[5M]		
10	. With help of diagram explain the operation of Schmitt Tigger circuit using transistors.	[12M]		